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ABSTRACT 

The structural and functional investigation of a hypothetical protein HP (KZV07215.1) 

from Saccharomyces cerevisiae (SC) has shed light on how fungal adaptation to 

unusual conditions and metabolic modifications occur. In this study, we performed a 

comprehensive in silico characterization of a mitochondrial hypothetical protein 

(KZV07215.1), encoded by the WN66_06778 gene, to elucidate its putative structure 

and function. Physicochemical profiling revealed a moderately acidic, hydrophobic, 

and highly stable 58.7-kDa protein with an isoelectric point of 6.55. According to the 

results of functional annotating programs like InterProScan, NCBI-CDD Search, and 

Pfam, the desired product is a cytochrome c oxidase (COX) protein of the respiratory 

system. Its 3D configuration was determined using the homology modeling technique 

by I-TASSER (TM-score estimation of 0.98 ± 0.05). Following the GalaxyRefine, a 

stable 3D structure was confirmed by PROCHECK, QMEAN (value of -3.36), 

QMEANDisCo Global (score of 0.77±0.05), and ERRAT (score of 92.381). FTSite 

confirms the site of activity of the hypothesized structure. Molecular docking revealed 

substantial binding affinities with HEA compounds, yielding docking scores of −159.90 

kcal/mol (HP-HEA III), ensuring robust and stable interactions. these findings strongly 

support the annotation of KZV07215.1 as a COX-I-like protein involved in electron 

transport chain complex IV activity. This work highlights the value of computational 

pipelines for functional annotation of uncharacterized mitochondrial proteins and 

suggests potential implications for understanding respiratory regulation and 

bioenergetic disorders.  
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1. INTRODUCTION 

Saccharomyces cerevisiae (SC) is a is a unicellular, yellow-green, spherical yeast belonging to the fungi kingdom, having 

16 chromosomes and a total genomic DNA of 12068 kilobases (kb). It is a tiny, single-cell fungus that can be readily 

cultured. It takes quick production, around 1.25-2 hours, to double at a temperature of 30°C, and allows the affordable 

maintenance of different variants [1]. As a facultative anaerobe, SC survives in both oxygen-rich and oxygen-limited 

environments, deriving energy through mitochondrial oxidative phosphorylation and the electron transport chain, as well as 

through fermentative pathways. Because of its metabolic versatility and genetic tractability, SC has long served as a 

cornerstone in mitochondrial genetics. Pioneering studies on respiratory-deficient “petite” mutants established cytoplasmic 

inheritance [2], and SC became the organism in which mitochondrial genes [3] and their mosaic intronic architecture [4,5] 

were first described. It was also the source of the earliest sequenced mitochondrial gene [6, 7]. Publication of the complete 

yeast genome in 1996 marked a turning point in functional genomics, revealing that nearly half (56%) of annotated genes 

lacked experimentally defined roles despite decades of biochemical and genetic research [8-11]. This unexpected knowledge 

gap stimulated large-scale functional genomics initiatives aimed at characterizing previously unknown proteins [12]. Even 

today, more than half of the predicted proteins in S. cerevisiae remain functionally uncharacterized, reflecting substantial 

gaps in our understanding of mitochondrial biology and proteome complexity. Experimental elucidation of such proteins is 

challenging due to technical, temporal, and financial constraints. Consequently, integrative computational approaches 

provide a powerful and efficient alternative for predicting the structural and functional properties of hypothetical 

mitochondrial proteins [13]. 

The respiratory chain’s terminal enzyme, cytochrome C oxidase (COX), catalyzes the coordinated movement of 

ferrocytochrome C's multiple (four) electrons towards oxygen molecules. Again, pumping protons also moves from the 

mitochondrial matrix to the mitochondrial inner cytosolic portion [14]. The catalytically active holoenzyme is made up of 

4 reactive metallic cores (Heme A, Heme A3, CuA, and CuB) comprised within a multi-subunit complex. The core of the 

binuclear reaction is made up of a bridge in-between the completely oxidative relaxation stage of CuB and Heme A3 [15]. 

Many polypeptide subunits make up the protein matrix that envelops the metal centers. The initial subunit binds the 

reductive cores of the proteins Heme A, Heme A3, and CuB in COXs originate from prokaryotic systems along with 

eukaryotic cell types. In addition to binding CuA, subunit II also engages in the binding of cytochrome c, most likely at a 

location near CuA [16]. The functioning of components I and II's proton transport may be modulated by subunit III [17]. 

The subunits that are responsible for the making up an active COX molecule are substantially more than three in eukaryotes. 

The mitochondrial genome codes for the three main subunits (I-III) of the eukaryotic COX complex. They possess basic 

sequence homology to those of three subunits of bacterial cytochrome c oxidases [18]. The remaining subunits are all 

products of the nuclear genome. SC serves as a versatile eukaryotic model for researchers to investigate mitochondrial 

biogenesis and the assembly of respiratory complexes. It can endure the absence of oxidative phosphorylation by using 

fermentation, which distinguishes it from most organisms.  This enables researchers to examine alterations that would be 

lethal in other creatures.  
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Furthermore, both its nuclear and mitochondrial genomes are amenable to genetic modification, making it an excellent 

model for investigating mitochondrial gene function [19, 20].  

This work aims to define a potential mitochondrial protein of S. cerevisiae (accession no. KZV07215.1) using a 

comprehensive in silico workflow integrating physicochemical profiling, domain annotation, evolutionary analysis, 

secondary and tertiary structure prediction, and molecular docking. By elucidating its putative relationship to COX-I, this 

work provides insights into its potential functional role in the yeast electron transport chain and lays the foundation for 

future experimental validation. 

 

2. MATERIALS AND METHODS 

2.1. Sequence Retrieval 

The NCBI (accessed February 2025) (National Center for Biotechnology Information) Protein database was searched for 

the keyword "Hypothetical proteins AND mitochondrion AND Saccharomyces cerevisiae," and the 766 residues of HP of 

SC were retrieved. From the list of hits, we randomly selected a hypothetical protein with accession number KZV07215.1 

(GI|1023939894|) and retrieved its FASTA sequence for further investigation. A peptide search based on sequence was also 

carried out to ascertain whether the protein is unnecessary or not, using UniProt peptide search [21]. 

2.2. Physicochemical Properties Analysis 

The ProtParam software in the online ExPASy server (accessed February 2025) was employed in order to evaluate preferred 

HPs chemically mediated as well as physical features. The analyzer yields theoretical measurements including weight of 

molecule, amino acid composition, theoretical pI value, count of both positive and negative residues, extinction coefficient, 

GRAVY score (grand average of hydropathicity), etc [22]. 

2.3. Functional Domain Annotation 

The HP was functionally annotated to make its functions clear. Several freely accessible databases and software, including 

the NCBI conserved domains database (CDD v3.21, updated 2024) [23], InterProScan v5.57-90.0 (2024 release) [24], and 

SUPERFAMILY v1.75 [25], were implemented for proper screening of HP’s functional domain and conserver. In every 

situation, the default parameters were used. The proteins are categorized using the screened-out domains found in the HP. 

The domains are found using these databases and additional bioinformatics techniques [26]. 

2.4. Phylogenetic Analysis and Visualization 

The UniProtKB (accessed February 2025) [27] was implemented, looking for similar sequences with the examined HP. 

Using UniProt’s BLAST technique [28] We looked for similarities in a database of unique proteins. Initially, a total of 42 

reviewed homologous protein sequences were identified from the UniProt database. Among them, the first 24 reviewed 

sequences were downloaded. They were all thought to serve the same function.  
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The multiple sequence alignment (MSA) was then done by utilizing the MAFFT v7.526 (April 2024) tool [29]. Using 

homologous sequence alignment, a phylogenetic tree was generated with PhyML v3.0 (release 2024) to highlight the 

evolutionary segregation of the related proteins [30]. The tree was shown by using the iTOL v6 (accessed February 2025) 

server [31]. 

2.5. Secondary Structure Prediction 

The prediction of the two-dimensional (2D) structure of HP was shown by the SOPMA servers [32, 33] and PSIPRED v4.0 

(2024 release) [34, 35].  With the use of "DATABASE.DSSP," SOPMA makes secondary structure predictions for proteins, 

whereas PSIPRED utilizes the PSI-BLAST algorithm with feed-forward neural networks [34, 35]. In both cases, the 

prediction of the 2D structure was performed using the FASTA sequence of HP. 

2.6. Tertiary Structure Prediction 

The prediction of three-dimensional (3D) structure was carried out by employing the I-TASSER (version 5.1, 2023) servers 

[36–38]. For homology modeling, we used the default values for all the variables of I-TASSER [39]. The anticipated three-

dimensional structures of the HP were improved, and then the YASARA v25.9.17 energy minimization server was 

implemented to reduce their energy [40]. After that, the enhanced 3D structures were further improved using GalaxyRefine 

[41]. GalaxyRefine produces several potential structures; the highest-performing and highest-quality ones are hand-selected. 

The structures of the HP were then converted into three-dimensional forms using PyMOL v2.5.2 [42, 43]. 

2.7. Model Quality Assessment 

SAVES v6.0 (2024 release; accessed March 2025) server’s ERRAT [44] modules along with PROCHECK [45] were 

accessible for the assessment of HP’s energy-minimization and ideal 3D structure. The 3D model of HP was validated 

further with the SWISS-MODEL (release 2024) Structural Assessment Tool, which was created by the Swiss Institute of 

Bioinformatics (SIB) [46, 47]. Finally, the highest standard model was chosen to support further investigation. 

2.8. Subcellular Localization Prediction 

The optimal functioning of peptides is influenced by their spatial surroundings, which control their biological networks and 

patterns of interaction [48]. In this particular context, several servers anticipated the HP's subcellular location, including 

Euk-mPLoc v2.0 [49], TargetP-v2.0 [50], and MitPred v2.0 (accessed March 2025) servers [51]. 

2.9. Binding Site Prediction and Molecular Docking 

The FTSite (2012; accessed March 2025) server was chosen for the determination of the active site and residues of the HP 

[52]. Quick residue-level annotations are achievable only when the structure and sequence of a protein have a relationship 

[53]. To ascertain the binding potency of the HP with Heme-A (HEA), molecular docking was conducted utilizing the 

HDOCK (2024; accessed April 2025) online service [54, 55]. The ligand HEA’s PDB files were acquired from the RCSB 

PDB [56], and the I-TASSER-generated HP was used as the receptor. The sets of complexes with high negative docking 

values were selected and retrieved, indicating excellent docking. Version v2.5.2 of PyMOL was used to visualize the 

obtained result from the HDOCK server [42, 43]. 
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3. RESULTS  
 

3.1. Retrieval of HP Sequence 

The protein database at NCBI was randomly queried, resulting in the HP WN66 06778, which is SC’s HP. Once this 

sequence was received, UniProt was searched. The HP's properties have been recorded for investigation. Different 

parameters, which represent the properties of the HP as well as HP’s sequence in FASTA format, have been saved. In this 

HP of SC, the number of total amino acids is 534, designated as WN66 06778. Other parameters, such as locus, were 

assigned as KZV07215, likewise accession as KZV07215, and version numbers as KZV07215.1 (Table 1). 

 

Table 1. Representation of distinctive attributes of HP derived from the NCBI protein database. 

 

Properties Hypothetical Protein 

Definition Hypothetical protein WN66_06778 (mitochondrion) [Saccharomyces cerevisiae] 

Accession KZV07215 

Version KZV07215.1 

Amino acid 534 

Organism Saccharomyces cerevisiae 

FASTA sequence >KZV07215.1 hypothetical protein WN66_06778 (mitochondrion) [Saccharomyces 

cerevisiae] 

MVQRWLYSTNAKDIAVLYFMLAIFSGMAGTAMSLIIRLELAAPGSQYLHGNSQLF

NVLVVGHAVLMIFFLVMPALIGGFGNYLLPLMIGATDTAFPRINNIAFWVLPMGLV

CLVTSTLVESGAGTGWTVYPPLSSIQAHSGPSVDLAIFALHLTSISSLLGAINFIVTT

LNMRTNGMTMHKLPLFVWSIFITAFLLLLSLPVLSAGITMLLLDRNFNTSFFEVAG

GGDPILYEHLFWFFGHPEVYILIIPGFGIISHVVSTYSKKPVFGEISMVYAMASIGLL

GFLVWSHHMYIVGLDADTRAYFTSATMIIAIPTGIKIFSWLATVYGGSIRLATPMLY

AIAFLFLFTMGGLTGVALANASLDVAFHDTYYVVGHFHYVLSMGAIFSLFAGYYY

WSPQILGLNYNEKLAQIQFWLIFIGANVIFFPMHFLGINGMPRRIPDYPDAFAGWN

YVASIGSFIATLSLFLFIYILYDQLVNGLNNKVNNKSVIYAKAPDFVESNTIFNLNTVK

SSSIEFLLTSPPAVHSFNTPAVQS 

NCBI (National Center for Biotechnology Information); HP (hypothetical protein). 

 

 

 

 

 

3.2. Physicochemical Properties Characterization 
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The physicochemical characteristics of the selected hypothetical protein (HP) were evaluated using the ExPASy ProtParam 

server, and the results are summarized in Table 2. The HP consists of 534 amino acids with an estimated molecular weight 

of 63,295.44 Da. The theoretical isoelectric point (pI) was calculated to be 6.55, indicating that the protein is moderately 

acidic while retaining a substantial net positive charge at physiological pH. Protein stability is a critical determinant of its 

structural integrity and functional performance across biological systems. The instability index (II), a commonly used 

indicator of in vivo stability, predicts a protein to be stable when the score is below 40 [57]. The aliphatic index (AI), which 

reflects the relative volume of aliphatic side chains and correlates with thermal stability, was calculated as 114.51 showing 

the target protein's increased thermal stability [58]. The hydropathy value of every amino acid regarding the desired 

sequence is calculated, and after dividing this value by the total number, we can finally obtain the GRAVY value for the 

queued protein. When the value of GRAVY is negative, the protein is considered hydrophilic. But in terms of a hydrophobic 

protein, this value is found as positive. HP has a calculated value of 0.76, indicating that it is a hydrophobic protein. The 

extinction coefficient, according to the Beer-Lambert rule, measures as a proportionality constant that estimates the power 

of specific light that is captured by a protein [59]. It was therefore determined that the HP's extinction coefficient was 92250. 

The high extinction coefficient means that there is an abundance of tyrosine, tryptophan, and cysteine in the surroundings 

[57]. However, Table 2 represents some other properties of the HP’s physicochemical features. 

 

Table 2. Representation of physicochemical characteristics of HP obtained from the ProtParam tool. 

 

Parameters Values 

Total Number of Negatively Charged 
Residues (Asp + Glu) 

22 
 

Total Number of Positively Charged 
Residues (Arg + Lys) 

19 

Formula C2779H4194N646O712S22 

Total Number of Atoms 8353 

Estimated Half-Life 30 hours (mammalian reticulocytes, in vitro) 
>20 hours (yeast, in vivo) 
>10 hours (Escherichia coli, in vivo) 

HP (hypothetical protein), pI (isoelectric point). 

 

3.3. Annotation of Functional Domain 

Multiple servers confirmed that the HP contains a well-established conserved domain named Cytochrome c oxidase-like 

subunit I (COX-I) (Supplementary Table 1). Through asymmetric proton absorption and proton pumping, electrons from 

COX transfer to oxygen molecules to absorb energy from the cell's membrane potential. In SC, the complex is made up of 

11 subunits. All respiring species share an elevated level of preservation in COX-I, one of the main subunits that is encoded 

within mitochondria. The fundamental protein COX-I is inserted with the redox cofactors copper and heme. Since COX 

enters the procedure of the assembly process from both sides of the membrane that covers the mitochondria, a high number 

of assembly components are needed for the enzyme to be assembled. Among the most precisely defined and most preserved 

assembly-related indicators, Shy1 (SURF-I homologue of yeast) is lost in SC. This causes a developmental deficit in non-
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biodegradable forms of carbon and a substantial decline in cytochrome oxidase [60]. The hypothesis that Shy1 participates 

in the Heme A3 insertion phase is supported by recent research. Translational activators for SC COX-I mRNA include 

Pet309 and the mitochondrial splicing suppressor protein 51 (Mss51). Pet309, the COX-I mRNA activator, belongs to the 

protein family known as pentatricopeptide repeats (PPR), which is frequently linked to RNA metabolism [61]. The versatile 

pioneer protein Mss51, the second COX-I-specific activator, lacks any functional domains or patterns in its sequence. 

Several computational techniques have proposed that HP's unique domain serves as subunit I of cytochrome c oxidase. 

 

3.4. Multiple Sequence Alignment and Analysis of Phylogeny 

For conducting MSA (Multiple Sequence Alignment), the UniProt database acted like a BLAST server, returning the values 

of HP for proteins discovered. This tool was used to search the protein database for microorganisms having the greatest 

proportion of sequence similarity, the protein and organism name, and the length of amino acid sequences (Supplementary 

Table 2). Following that, the MAFFT tool was applied to perform sequence alignment. The phylogeny analysis was 

performed so that it could identify the evolutionary relationship of KZV07215.1 and its origin. The phylogenetic analysis 

was performed for the first 24 reviewed homologous protein sequences from different organisms. It was observed that the 

sequences of the HP and Saccharomyces COX-I are 99.3% similar, putting them in a similar clade of the neighbor-joining 

tree (Figure 1). Nevertheless, the tree also showed us that the COX-I protein of Saccharomyces paradoxus, Candida 

glabrata, and Kluyveromyces lactis has maximum sequence similarity with that of HP, 99.1%, 91.4%, and 91.4%, 

respectively. Moreover, Wickerhamomyces canadensis and Vanderwaltozyma polyspora COX-I proteins showed more than 

80% sequence similarity with HP of SC (83.9% and 86.3%, respectively).  
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Figure 1. Phylogenetic tree revealing the ancestral relationship of the queued protein (marked as red) with other subunit I 

of COX proteins. 

 

3.5. Secondary Structure Prediction 

The 2D structure prediction was anticipated using a couple of techniques, such as PSIPRED and the SOPMA website. To 

summarize, the PSIPRED server revealed that our predicted protein structure will have its largest alpha-helix area, followed 

by random coils, and lastly extended strands (Figure 2). As predicted by PSIPRED, the SOPMA server concurred with it, 

stating that this HP might have contained a higher fraction of alpha-helix than prolonged strand or random coils 

(Supplementary Table 3). 
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Figure 2. Prediction of 2D design of HP conducted by PSI-PRED server. The alpha helix, random coil, and extended 

strand structures are pointed by pink, ash and yellow colors. 
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3.6. Tertiary Structure Prediction 

The I-TASSER platform was used to precisely anticipate HP models. I-TASSER generated a model for our target protein, 

selecting one with a TM-score of 0.98±0.05 and a calculated RMSD of 3.6±2.5 from all models produced (Figure 3).  A 

TM value exceeding 0.5 indicates a structure with suitable topology, whereas a TM value below 0.17 suggests random 

similarity. Consequently, the YASARA server has increased the energy of the protein structure, while the GalaxyRefine 

server has enhanced the accuracy of its projected models. The program PyMOL was used to analyze and display the three-

dimensional structures of the proposed and modified models. The YASARA energy-minimization server reduced the protein 

structural energy from -219693.9 to -247734.9 kJ/mol. The initial value was -2.59; however, after optimizing the energy of 

the HP, the final value was -0.48, indicating a comparatively more stable structure. 

 
Figure 3. Predicted 3D configuration of the hypothetical protein via I-TASSER server after minimizing energy using 

YASARA and GalaxyRefine (visualized by PyMOL). The red-spiral represents alpha helices and no beta-sheet 

arrangements, while the horizontal ribbon stands for the HP's coil structure, in that order. HP stands for hypothetical protein. 

 

3.7. Assessment of Structure Quality 

According to the SAVES PROCHECK, 95.5% of the residues of amino acids were situated among a Ramachandran's top 

choice areas, whereas 3.7% were positioned in additional authorized regions (Figure 4). The ERRAT score of the I-

TASSER predicted model is 92.381. According to the SWISS-MODEL, MolProbity gives I-TASSER's HP a value of 1.52, 

Ramachandran favored region of 97.18%, a QMEAN value of -3.36, and a QMEANDisCo Global of 0.77±0.05 

(Supplementary Figure 1). We examined the structure and decided on the I-TASSER model for further investigation. 
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According to ProSA, the predicted Z-score of the HP model is given a negative figure by I-TASSER: -5.71 (Supplementary 

Figure 2). 

 
 

Figure 4. The model displayed through the I-TASSER server's Ramachandran plot. The beta-sheet area and other tertiary 

structural elements of the HP are represented by the first quadrant, where the alpha-helix area of the left and right hands is 

represented by the second and third quadrants, respectively. Furthermore, the residues in the most preferred, additional 

allowed, generously allowed, and prohibited regions are represented by the color regions in red, yellow, gray, and white, 

respectively. 

 

3.8. Prediction of Subcellular Localization 

Several servers, including Euk-mPLoc 2.0, TargetP-2.0, and MitPred, have predicted where the HP will be located within 

the cell. Various biological activities are connected to a variety of cellular sites [62]. Identifying HP’s location within the 

cell may shed light on the protein’s probable function. Also, this information could be used to develop a medicine that 

suppresses the action of the protein being investigated [62]. 

The researchers proposed that HP belongs to the mitochondrial protein (Supplementary Table 4). 

3.9. Prediction of Binding Site 

The model's binding site was evaluated using the FTSite server. The amino acid residues inside the binding area were also 

considered. The results were then shown using the program PyMOL (Figure 5). Characterizing the residues of the binding 

site is crucial for understanding the functionality of such sites. The active residues of the three main active areas of the 

model protein are identified using the FTSite estimation (Supplementary Table 5).  
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Figure 5. Representation of activation sites along with active amino acid molecules predicted by the FTase server. The 

protein is shown by the cyan hue; on the other hand, the red, green, and blue colors indicate the active sites I, II, and III, 

respectively. 

 

Upon evaluating the active sites of the target protein using the FTSite server, around thirty amino acid residues were 

identified. Meanwhile, its active site had five functional amino acid residues, as identified by InterProScan: His-62, His-

378, Ser-382, Ile-424, and Ala-461. Based on predictions from InterProScan, NCBI-CD Search, and Pfam, these residues 

are situated within the COX-I domains of the potential target protein. The HDOCK server was used to analyze the docking 

patterns of the ligand and the target protein. The target protein (WN66_06778) was conjugated with the ligand Heme A 

(HEA). A greater negative docking score suggests a more plausible binding model. Our investigation indicates that HP-

HEA III has the greatest potential to establish a binding model, with a maximum docking score of -159.90. The probability 

of the two molecules joining is maximized when the confidence level exceeds 0.7. The likelihood of the two molecules 

joining is moderate to high when the confidence level ranges from 0.5 to 0.7 and minimal when the value falls below 0.5. 

The confidence score of HP-HEA III in this instance is 0.5493, indicating a substantial probability of molecular binding. 

HP-HEA II has a confidence score of roughly 0.5, indicating its propensity to bind. Generally, a closer alignment of the 

docking posture with the ligand's binding mode results in a reduced root mean square deviation (RMSD) seen throughout 

the experiment.  
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Figure 6.  Molecular docking investigation of HP with Heme A. The site-specific docking was shown by the figure (A, B 

and C). Here, the ribbon that is displayed represents the HP and the strands depict the ligand (green color). 

 

In our analysis, HP-HEA III has the lowest ligand RMSD value of 103.05 Å. The ligand and protein exhibited a substantial 

binding affinity. The analysis revealed a similarity between the HP and several interaction residues in the active site. The 

result aligns with the FTSite server's assessment of the active site. Results of the docking are illustrated in Figure 6 and 

Table 3. 

Table 3.  Investigation of molecular docking of the HP with the Heme A.  
 

Site ID Interacting residues Docking 
score 

Confidence 
score 

Ligand 
RMSD (Å) 

HP-HEA I HIS62, ALA63, MET66, ILE67, 
VAL71, TRP127, LEU247, 
VAL373, VAL374, PHE377, 
HIS378, LEU381, SER382, 
ARG438 

-108.99 0.3057 127.63 

HP-HEA II SER33, ILE36, ARG37, 
LEU40, PHE55, VAL59, 
HIS62, TYR371, VAL374, 
ARG438, ARG439, ILE440 

-147.16 0.4858 127.43 

HP-HEA III LEU17, MET20, LEU21, 
PHE24, PHE103, TRP104, 
PRO107 

-159.90 0.5493 103.05 
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4. DISCUSSION 
 

In microbial and eukaryotic genomes, hypothetical proteins (HPs) are a significant although unexplored component. 

Bioinformatic characterization is crucial for identifying preliminary functions and directing future empirical studies because 

many of them lack experimental validation at the protein level, despite their presence being obvious at the sequence level 

[63]. Understanding the functions of HPs is essential to fully comprehending genomic and proteomic landscapes since these 

proteins often represent novel structures, undiscovered regulatory mechanisms, or uncharacterized enzymatic activity [21, 

26]. Additionally, their characterization can shed light on metabolic pathways, mechanisms linked to disease, and possible 

targets for treatment [64].  

In this study, we performed a comprehensive in silico evaluation of the hypothetical mitochondrial protein WN66_06778 

from Saccharomyces cerevisiae. Physicochemical analysis revealed a stable, moderately acidic, hydrophobic protein with a 

calculated molecular weight of 58.75 kDa, a theoretical pI of 6.55, and a GRAVY score of 0.760. Multiple localization 

servers consistently predicted its mitochondrial residency, aligning with its hydrophobic nature and suggested 

transmembrane features. Secondary structure predictions indicated that the protein is predominantly alpha-helical, 

consistent with known structures of mitochondrial membrane proteins, particularly members of the electron transport chain 

[65, 66]. Functional annotation through InterProScan, Pfam, and NCBI-CDD strongly identified conserved motifs 

corresponding to cytochrome c oxidase subunit I (COX-I). This prediction was reinforced by BLAST-based homology 

analysis, which revealed up to 99% sequence identity with known COX-I proteins from closely related yeast species 

(Supplementary Table 2). COX-I is a core catalytic subunit of Complex IV, integral for proton pumping and electron 

transfer to molecular oxygen during oxidative phosphorylation. Its biogenesis is tightly coordinated through mitochondrial 

and nuclear gene expression, translational regulation, and cofactor incorporation [67-70]. 

Mitochondrial COX assembly requires an intricate interplay of nuclear-encoded factors, including Pet309, Mss51, and Shy1, 

which orchestrate COX-I translation, heme A insertion, and holoenzyme formation [ 71-76]. Disruption of these processes, 

often studied in petite mutants, impairs respiratory capacity and highlights the central role of COX-I as the structural scaffold 

for assembly of the full complex. Previous studies confirm that when COX subunits or cofactors are unavailable, COX-I 

synthesis is downregulated to prevent accumulation of assembly intermediates [73, 74]. The protein examined in this study 

demonstrated strong alignment with these conserved features, supporting its predicted classification as a COX-I-like protein. 

Structural predictions generated using I-TASSER produced a high-confidence 3D model, which passed multiple validation 

criteria, including PROCHECK, QMEAN, ERRAT, and energy minimization via YASARA. The high TM-score (0.98 ± 

0.05) indicates strong structural homology to experimentally resolved COX-I proteins. Active site mapping with FTSite 

identified approximately thirty putative functional residues, many of which aligned with known catalytic or ligand-binding 

positions within COX-I. Molecular docking with heme A, the primary cofactor for COX-I further substantiated this 

functional prediction. Among the docking complexes, HP-HEA III exhibited the strongest affinity (-159.90 kcal/mol) with 

superior confidence and lower RMSD values, indicating a stable and plausible interaction. Many interacting residues 

overlapped with the predicted active-site regions, reinforcing the protein’s likely catalytic capacity rather than a purely 

structural or accessory role [77-80]. 
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The functional relevance of COX-I is underscored by its association with numerous mitochondrial pathologies. Defects in 

COX-I assembly or function can lead to impaired oxidative phosphorylation, elevated reactive oxygen species production, 

and severe clinical manifestations such as mitochondrial encephalomyopathies, Leigh syndrome, and neonatal-onset COX 

deficiency syndromes [81]. Several human orthologues of yeast COX assembly factors, including SCO1 and SCO2, are 

known contributors to such disorders, demonstrating evolutionary conservation and biomedical significance [82-84]. Thus, 

the accurate annotation of mitochondrial HPs with COX-I-like features may have broader implications for understanding 

mitochondrial dysfunction across species. 

Overall, our findings offer strong computational evidence that the hypothetical protein WN66_06778 is a COX-I like 

mitochondrial protein with plausible catalytic activity and functional relevance within the electron transport chain. This 

study underscores the utility of integrative bioinformatics in clarifying the roles of uncharacterized proteins and sets the 

stage for targeted experimental validation. Beyond its biological importance in S. cerevisiae, this protein may hold 

translational relevance for mitochondrial research, industrial biotechnology, and the study of oxidative phosphorylation 

disorders. 

 

5. CONCLUSION  
 

This study provides a comprehensive computational characterization of the hypothetical mitochondrial protein 

WN66_06778 from Saccharomyces cerevisiae. Through integrated physicochemical analysis, structural modeling, domain 

annotation, evolutionary profiling, and molecular docking, we identified strong evidence that this uncharacterized protein 

represents a cytochrome c oxidase subunit I (COX-I) like protein. The predicted structural stability, predominant α-helical 

architecture, mitochondrial localization, and high sequence homology with known COX-I proteins collectively support this 

functional classification. High-confidence 3D modeling and validation further reinforced the reliability of the predicted 

structure, while binding site analysis and docking with heme A demonstrated robust ligand interactions consistent with a 

catalytic role in mitochondrial Complex IV. These findings not only clarify the probable biological role of WN66_06778 

but also underscore its importance in oxidative phosphorylation and mitochondrial energy metabolism. Given the central 

role of COX-I in electron transport and the association of its dysfunction with diverse mitochondrial disorders, the detailed 

annotation of this protein creates a foundation for future experimental validation. Overall, this work highlights the power of 

in silico approaches for functional prediction of hypothetical proteins and provides valuable insights that may support future 

studies in yeast bioenergetics, mitochondrial biology, and industrial or biomedical applications. 
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